NATIONAL
 CURRICULUM
 5-16

NVQ

First published in 2000
© Qualifications and Curriculum Authority 2000

Reproduction, storage, adaptation or translation, in any form or by any means, of this publication is prohibited without prior written permission of the publisher, unless within the terms of licences issued by the Copyright Licensing Agency. Excerpts may be reproduced for the purpose of research, private study, criticism or review, or by educational institutions solely for educational purposes, without permission, provided full acknowledgement is given.

Produced in Great Britain by the Qualifications and Curriculum Authority under the authority and superintendence of the Controller of Her Majesty's Stationery Office and Queen's Printer of Acts of Parliament.

The Qualifications and Curriculum Authority is an exempt charity under Schedule 2 of the Charities Act 1993.

Qualifications and Curriculum Authority
29 Bolton Street
London
W1Y 7PD
www.qca.org.uk/

Further teacher packs may be purchased (for any purpose other than statutory assessment) by contacting:

QCA Publications, PO Box 99, Sudbury, Suffolk CO10 2SN
(tel: 01787 884444; fax: 01787 312950)

Ma

Mathematics tests

KEY STAGE 3

ALL TIERS

2000

Mark scheme for Paper 1

Tiers 3-5, 4-6, 5-7 and 6-8

Index to mark schemes

Tier				Question	Page
3-5	4-6	5-7	6-8		
1				Milk Shakes	11
2				Three Coins	11
3				Time	11
4				Sums	12
5				Calendar	12
6	1			Sixty-fives	13
7	2			Spinners	14
8	3			Shapes	16
9	4			Birthdays	17
10	5			Rainfall	17
11	6	1		Angles	18
12	7	2		Prism	20
13	8	3		Race	20
14	9	4		Percentages A	21
15	10	5		Museum	21
16	11	6	1	Simplify	22
	12	7	2	Puzzle	22
	13	8	3	Coloured Cubes	23
	14	9	4	Perimeters	24
	15	10	5	Equations	25
		11	6	Rounding	26
		12	7	Mast	26
		13	8	Factorising	27
		14	9	Operations	27
		15	10	Expressions	28
		16	11	Values	28
			12	Similar Triangles	29
			13	Powers	30
			14	Expansion	31
			15	Isosceles	32

Introduction

The test papers will be marked by external markers. The markers will follow the mark scheme in this booklet, which is provided here to inform teachers.

This booklet contains the mark scheme for paper 1 at all tiers. The paper 2 and the extension paper mark schemes are printed in separate booklets. Questions have been given names so that each one has a unique identifier irrespective of tier.

The structure of the mark schemes

The marking information for questions is set out in the form of tables, which start on page 11 of this booklet. The columns on the left-hand side of each table provide a quick reference to the tier, question number, question part, and the total number of marks available for that question part.

The 'Correct response' column usually includes two types of information:

- a statement of the requirements for the award of each mark, with an indication of whether credit can be given for correct working, and whether the marks are independent or cumulative;
- examples of some different types of correct response, including the most common and the minimum acceptable.

The 'Additional guidance' column indicates alternative acceptable responses, and provides details of specific types of response which are unacceptable. Other guidance, such as when 'follow through' is allowed, is provided as necessary.

For graphical and diagrammatic responses, including those in which judgements on accuracy are required, marking overlays have been provided as the centre pages of this booklet.

Using the mark schemes

Answers that are numerically equivalent or algebraically equivalent are acceptable unless the mark scheme states otherwise.

In order to ensure consistency of marking, the most frequent procedural queries are listed below with the prescribed correct action. Unless otherwise specified in the mark scheme, markers will apply the following guidelines in all cases.

What if ...

$\left.$| The pupil's response
 does not match
 closely any of the
 examples given. | Markers should use their judgement in deciding whether the response
 corresponds with the statement of requirements given in the 'Correct response'
 column. Refer also to the additional guidance, and if still uncertain contact
 the supervising marker. |
| ---: | :--- |
| The pupil has
 responded in a
 non-standard way. | Calculations, formulae and written responses do not have to be set out in any
 particular format. Pupils may provide evidence in any form as long as its
 meaning can be understood. Diagrams, symbols or words are acceptable for
 explanations or for indicating a response. Any correct method of setting out
 working, however idiosyncratic, is acceptable. Provided there is no ambiguity,
 condone the continental practice of using a comma for a decimal point. |
| The pupil's accuracy
 is marginal | Overlays can never be 100\% accurate. However, provided the answer is
 within, or touches, the boundaries given, the mark(s) should be awarded. |
| according to the
 overlay provided. | The pupil's answer
 correctly follows |
| through from earlier | |
| incorrect work. | |\quad| 'Follow through' marks may be awarded only when specifically stated in the |
| :--- |
| mark scheme, but should not be allowed if the difficulty level of the question |
| has been lowered. Either the correct response or an acceptable 'follow |
| through' response should be marked as correct. | \right\rvert\,

The final answer is wrong but the correct answer is shown in the working.	Where appropriate, detailed guidance will be given in the mark scheme, and must be adhered to. If no guidance is given, markers will need to examine each case to decide whether: the incorrect answer is due to a transcription error;	If so, award the mark.
	in questions not testing accuracy, the correct answer has been given but then rounded or truncated;	If so, award the mark.
	the pupil has continued to give redundant extra working which does not contradict work already done;	If so, award the mark.
	the pupil has continued, in the same part of the question, to give redundant extra working which does contradict work already done.	If so, do not award the mark. Where a question part carries more than one mark, only the final mark should be withheld.
The pupil's answer is correct but the wrong working is seen.	A correct response should always be marked as correct unless the mark scheme states otherwise.	
The correct response has been crossed (or rubbed) out and not replaced.	Mark, according to the mark scheme, any legible crossed (or rubbed) out work that has not been replaced.	
More than one answer is given.	If all answers given are correct (or a range of answers are given, all of which are correct), the mark should be awarded unless prohibited by the mark scheme. If both correct and incorrect responses are given, no mark should be awarded.	
The answer is correct but, in a later part of the question, the pupil has contradicted this response.	A mark given for one part should not be disallowed for working or answers given in a different part, unless the mark scheme specifically states otherwise.	

General guidance

Throughout the marking of the key stage 3 mathematics tests, the following general guidelines should be observed unless specific instructions to the contrary are given. This guidance reflects decisions made to ensure fairness and consistency of marking.

Responses involving probability

A numerical probability should be expressed as a decimal, fraction or percentage only.

	Accept \checkmark	Take care! Do not accept \times
For example: 0.7	\checkmark A correct probability that is correctly expressed as a decimal, fraction or percentage. \checkmark Equivalent decimals, fractions or percentages $\text { eg } \quad 0.700, \frac{70}{100}, \frac{35}{50}, 70.0 \%$ \checkmark A probability correctly expressed in one acceptable form which is then incorrectly converted, but is still less than 1 and greater than 0 $\text { eg } \quad \frac{70}{100}=\frac{18}{25}$	The following four categories of error should be ignored if accompanied by an acceptable response, but should not be accepted on their own. ! A probability that is incorrectly expressed eg 7 in 10, 7 out of 10, 7 from 10 ! A probability expressed as a percentage without a percentage sign. ! A fraction with other than integers in the numerator and/or denominator. However, each of the three types of error above should not be penalised more than once within each question. Do not award the mark for the first occurrence of each type of error unaccompanied by an acceptable response. Where a question part carries more than one mark, only the final mark should be withheld. ! A probability expressed as a ratio eg 7:10, 7:3, 7 to 10 x A probability greater than 1 or less than 0

Responses involving money

	Accept \checkmark	Do not accept \times
For example: £3.20 $£ 7$	\checkmark Any unambiguous indication of the correct amount eg $£ 3.20(p), £ 320, £ 3,20$, 3 pounds 20, £3-20, £3 20 pence, $£ 3: 20$, f7.00 \checkmark The $£$ sign is usually already printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the f sign, accept an answer with correct units in pounds and/or pence eg 320 p 700p	x Incorrect or ambiguous use of pounds or pence eg $£ 320, £ 320$ p or $£ 700$ p, or 3.20 or 3.20 p not in answer space. x Incorrect placement of decimal points, spaces, etc or incorrect use or omission of 0 eg f3.2, f3 200, £32 0, £3-2-0 £7.0

Responses involving the use of algebra

	Accept \checkmark	Take care ! Do not accept \times
For example: $\begin{aligned} & 2+n \\ & n+2 \end{aligned}$ $2 n$	\checkmark The unambiguous use of a different case eg N used for n \checkmark Unconventional notation for multiplication eg $n \times 2$ or $2 \times n$ or $n 2$ or $n+n$ for $2 n$, $n \times n$ for n^{2} \checkmark Multiplication by 1 or 0 eg $2+1 n$ for $2+n$, $2+0 n$ for 2 \checkmark Words used to precede or follow equations or expressions eg $t=n+2$ tiles or tiles $=t=n+2$ for $t=n+2$ \checkmark Unambiguous letters used to indicate expressions eg $t=n+2$ for $n+2$ \checkmark Embedded values given when solving equations eg $3 \times 10+2=32$ for $3 x+2=32$! Words or units used within equations or expressions should be ignored if accompanied by an acceptable response, but should not be accepted on their own eg do not accept $n \text { tiles }+2$ $n \mathrm{~cm}+2$ x Change of variable eg x used for n x Ambiguous letters used to indicate expressions $\text { eg } \quad n=n+2$ However, to avoid penalising any of the three types of error above more than once within each question, do not award the mark for the first occurrence of each type within each question. Where a question part carries more than one mark, only the final mark should be withheld. \times Embedded values that are then contradicted

Responses involving time

	Accept \checkmark	Take care! Do not accept \times
A time interval For example: 2 hours 30 min A specific time For example: 8.40am	\checkmark Any unambiguous indication eg 2.5 (hours), 2h 30 \checkmark Digital electronic time ie 2:30 Note that 2:30 is accepted for 2 h 30 m because it is a common electronic expression (eg the time interval shown on an oven timer). \checkmark Any unambiguous, correct indication eg $08.40,8.40,8: 40,0840,840$, $8-40$, twenty to nine, 8,40	x Incorrect or ambiguous time interval eg 2.3(h), 2.30, 2-30, 2h 3, 2.30 min ! The time unit, hours or minutes, is usually printed in the answer space. Where the pupil writes an answer other than in the answer space, or crosses out the given unit, accept an answer with correct units in hours or minutes, unless the question has asked for a specific unit to be used. x Incorrect time eg $8.4 \mathrm{am}, 8.40 \mathrm{pm}$ x Incorrect placement of divisors, spaces, etc or incorrect use or omission of 0 eg 840, 8:4:0, 084, 84

Responses involving co-ordinates

	Accept \checkmark	Do not accept \times
For example: $(5,7)$	```\checkmark Unambiguous but unconventional notation eg (05,07) (five, seven) (\begin{array}{c}{x,}\\{7}\end{array}) (x=5, y=7)```	```x Incorrect or ambiguous notation eg (7,5) (5x,7y) (x5,y7) (5```

Recording marks awarded on the test paper

All questions, even those not attempted by the pupil, will be marked, with a 1 or a 0 entered in each marking space. Where 2 m can be split into 1 m gained and 1 m lost, with no explicit order, then this will be recorded by the marker as 1

The total marks awarded for a double page will be written in the box at the bottom of the right-hand page, and the total number of marks obtained on the paper will be recorded on the front of the test paper.

A total of 120 marks is available in each of tiers 3-5, 4-6 and 6-8, and a total of 121 marks in tier 5-7. The extension paper carries 41 marks.

Awarding levels

The sum of the marks gained on paper 1, paper 2 and the mental arithmetic paper determines the level awarded. A copy of the level threshold tables which show the mark ranges for the award of different levels will be sent to each school by QCA in July 2000.

Schools will be notified of pupils' results by means of a marksheet, which will be returned to schools by the External Marking Agency with the pupils' marked scripts. The marksheet will include pupils' scores on the test papers and the levels awarded.

BLANK PAGE

Tier \& Question						Time
3-5	4-6	5-7	6-8			Time
3					Correct response	Additional guidance
a				1 m	7:55	
b				1m	33	
c				1 m	14:20	

Tier \& Question						Calendar
3-5	4-6 5	5-7	6-8			
5					Correct response	Additional guidance
a				1 m	Tuesday	\checkmark Unambiguous abbreviation eg - Tues - Tu \times Ambiguous abbreviation that could refer to Thursday eg - T
b				1 m	30 (th)	\checkmark Unambiguous indication eg - Marking of diagram.
c				1 m	122	

Tier \& Question					Sixty-fives
3-5	4-6 5	5-7 $6-8$			
6	1			Correct response	Additional guidance
a	a		$\begin{aligned} & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \\ & 1 \mathrm{~m} \end{aligned}$	325 6 780 1300	
b	b		$2 \mathrm{~m}$ or $1 \mathrm{~m}$	Shows a reasonably efficient correct method, even if there are processing errors eg - 8×65, then doubled. - 10×65 add 6×65 - $390+650$ - Added 4 of them, to 2 of them, to 10 of them. - Their $12 \times 65+260$ - 130×8 - $520+520$! Method uses long multiplication Accept, provided there is not more than one processing error. ! Method uses repeated addition from 650 Accept provided there is not more than one computational error. The correct intermediate values are: 715 780 845 910 975 ${ }^{\mathbf{x}}$ Method uses repeated addition without building on from 650, or better eg - Adding 65 sixteen times. - Adding 130 eight times. - Adding 260 four times. ! Follow through from part (a) For 2 m or 1 m , where a pupil has used, unambiguously, an incorrect answer from 12×65 or 20×65 to calculate 16×65, allow follow through. For example, suppose their $12 \times 65=723$, accept for 2 m - $723+260=983$ However, it must be clear from the working that this incorrect value has been used, hence in this example do not accept 983 without working.

Tier \& Question						Spinners (cont)
3-5	4-6	5-7 6	6-8			
7	2				Correct response	Additional guidance
b	b			1 m	Doesn't matter with a correct reason The most common correct reasons refer to: Same numbers / sections / sides eg - Both numbered 1 to 6 - Same amount of numbers. - Same shape. or Same probability eg - Both $\frac{1}{6}$ - C is same probability as B - Same chance. or Same angles eg - Both 60°	\checkmark Minimally acceptable reason eg - Same numbers. - Both have only one 3 - Same gaps. ! Use of 'different size' without qualification Ignore eg, do not accept - It doesn't matter even though they are different sizes. - Doesn't matter if one is bigger than the other. ! A correct probability incorrectly expressed Mark as part (a) of this question eg, accept - Both spinners are 1 in 6 eg - The triangles are the same width.
c	c			$\begin{gathered} 2 \mathrm{~m} \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	Two 3 s and three 4 s in any order. Partially correct, ie exactly two 3s seen. or Exactly three 4s seen.	

	\& Que				Shapes
8	3			Correct response	Additional guidance
a	a		1m	Both correct, ie	
b	b		1m	$(5,7)$	\checkmark Co-ordinates of A given alongside B eg $(3,3,5,7)$ \checkmark Label included within the co-ordinates eg - (B5, 7)
c	c		1m	Correct place eg	\checkmark Place identified by correct co-ordinates ! Label rather than point identified Accept any indication, eg cross or B, provided it is nearer to the correct co-ordinate than to any other co-ordinate with integer values.
d	d		1m	Correct place eg	

Tier \& Question						
3-5	4-6	5-7	6-8			
9	4				Correct response	Additional guidance
a	a			1 m	21	
b	b			1m	1989 or 89	! Follow through as 2010 - (a) Accept provided their (a) > 12 and is not a multiple of 10
c	c			1 m	1995 or 95	\checkmark Follow through as part (b) +6 \checkmark Correct birth date or month given eg - 15.3.95 - March 95

Tier \& Question				Marking overlay available		
3-5	4-6	5-7	6-8			
11	6	1			Correct response	Additional guidance
a	a	a		1m	Q	\checkmark Unambiguous indication eg - Second.
b	b	b		$2 \mathrm{~m}$ or 1m	Angle within $\pm 2^{\circ}$, unambiguous eg, using an end point of the given line, or starting again eg, cutting the given line Angle within $\pm 4^{\circ}$, unambiguous or Using end point or starting again: correct angle drawn $\pm 2^{\circ}$, but reflex angle indicated eg or Cutting the given line: correct angle drawn $\pm 2^{\circ}$, but no, or incorrect, indication of which angle to choose eg or Draws the supplement to $\pm 2^{\circ}$ eg	

Tier \& Question				Angles (cont)		
3-5	4-6	5-7	6-8			
11	6	1			Correct response	Additional guidance
c	c			1m	38 with explanation that focuses on most frequent eg - More of them. - Mode. - Most. - Twice as many said 38 as the others put together. - 10 people aren't likely to be wrong.	\checkmark Minimally acceptable explanation eg - 10 people measured it. \checkmark Correct response accompanied by an incorrect, irrelevant or ambiguous statement eg - More people chose it and it's the middle number. - It's the average, there's more of them. \times Use of 'average' without a correct response eg - It's the average.
		c		1m	135 with correct explanation The most common correct explanations are: 135 being the mode / median / mean when 45° removed eg - 10 said about 135 , only half of that said 45 so it's 135 - 45 is too different, 135 most likely. - Discard 45 , then 135 is the average. - 45 is too different, then 135 is in the middle. or That 45 is due to incorrect reading of the scale eg - The 45 s are errors, 135 most likely. - 135 is the mode. The 45 s are probably reading the scale incorrectly. - 135 lies by 45 which is the wrong side.	\checkmark Minimally acceptable explanation referring to 45 eg - 45 is too different to the others, so 135 - 135 , fewer people but 45 is nothing like the rest. ! Minimally acceptable explanation that does not refer to 45 The explanation must justify why 135 chosen rather than 134 or 136 eg, accept - Most of them are around 135 - 135 is between 134 and 136 $\mathbf{x}^{\text {Misinterpreting the table or other incorrect }}$ or ambiguous response eg - Only 1 said 45, 3 said $134-136$, and 135 is in the middle of them so it's 135 - Out of 3,4 and 5,4 is the middle so 135 - The average is 3 but there are 2 answers with 3 so I chose 135 as it's in-between. - Most of them are 135 (no reference to 45 or around 135) - 135 is the middle of the table (no reference to 45)

Tier \& Question						Prism
12	7	2			Correct response	Additional guidance
a	a	a		1 m	Correct edge, ie	\checkmark Unambiguous indication or use of different labels eg, for edge A
b	b	b		1 m	Correct edge, ie	${ }^{x}$ Ambiguous indication that could refer to more than one edge eg, for edge A ! Both edges identified correctly but no indication of which is which Mark as 0,1
c	c	c		1 m	Both correct, ie	! Different symbols Accept if unambiguous, but do not accept use of letters A and/or B

Tier \& Question					Puzzle
3-5 4-6	5-7	6-8			
12	7	2		Correct response	Additional guidance
a	a	a	1 m	(+) 5 and - 3	\checkmark Either order
					! Answers to parts (a) and (b) reversed Mark as 0, 1
b	b	b	1 m	- 5 and (+) 3	
c	c	c	1 m	-4 and - 2	
d	d	d	1 m	-5	

$\begin{array}{\|l\|} \hline \text { Tier \& Question } \\ \hline 3-5 \end{array} 4-6 \text { 5-7 }\|6-8\|$			Coloured Cubes		
13	8	3		Correct response	Additional guidance
a	a	a	1m	$\frac{4}{5}$, or equivalent probability	
b	b	b	1m	4	! Correct digit expressed as a proportion of the total cubes Mark only the first such occurrence as incorrect eg, mark the following as 0,1 then 1,1 - $\frac{4}{5}$ (part b) $\frac{8}{10}$ (part c) $\frac{7}{20}$ (part d) If this is seen for the first time in part (d), mark part (d) as 1,0
c	c	c	1m	8	\checkmark Answer to part (c) refers to part (b) eg - 4 more.
d	d	d	2 m or 1 m	7 Shows $\frac{3}{5}$ of 20 is 12 eg - 12 (green) - $\frac{3}{5}=\frac{12}{20}$ or 13 seen with no evidence of an incorrect method.	$\times 12 \mathrm{~B} \text { or } 12 \mathrm{Y}$

Tier \& Question						Perimeters
3-5	4-6	5-7	6-8			
	14	9	4		Correct response	Additional guidance
	a	a	a	1 m	Both correct, ie	
	b	b	b	$2 \mathrm{~m}$ or 1m	Correct simplified expression eg - $4 n+10$ - $4(n+2.5)$ - $2(2 n+5)$ - $(2 n+5) \times 2$ Correct expression seen, even if terms are not collected together eg - $5+n+n+n+n+5$ - $2 n+2 n+10$ or An otherwise correct simplified expression, of $4 n+k,(k \neq 10)$ eg - $4 n+(10 \div 2)$ - $4(n+5)$ - $2(2 n+2)$! Incorrect working follows correct response eg, for part (a) - $4 n+10=40 n$ Mark as 1,0 ! Correct answer preceded by incorrect working If the intended answer is unambiguous, ignore preceding work eg, for part (a), accept - $5+2 n \times 2=10+4 n$! An otherwise correct simplified expression with the only error being that the brackets are omitted eg, for part (b) - $2 n+5 \times 2$ Mark as 1, 0
	c	c	c	2m or 1m	Correct simplified expression eg - $40+n$ - $2\left(20+\frac{1}{2} n\right)$ Correct expression seen, even if terms are not collected together eg - $10 \times 4+n$ - $40+\frac{1}{2} n+\frac{1}{2} n$ - $2(n \div 2+20)$ or An otherwise correct simplified expression, of $n+k,(k \neq 40$ but is a multiple of 10$)$ eg - $2(n \div 2+10)$! Value for n substituted into an otherwise creditworthy response Ignore.
	d	d	d	1 m	10	$\checkmark 10 \mathrm{~cm}$

Tier \& Question						Rounding
3-5	4-6	5-7	6-8			
		11	6		Correct response	Additional guidance
		a	a	1 m		
		b	b	1 m	16	
		c	c	1 m	6	$\times 6.0$
		d	d	1m	Answer in the range 28 to 34 inclusive	

\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{3}{|l|}{Tier \& Question} \& \multicolumn{3}{|c|}{\multirow[b]{2}{*}{Marking overlay available}}

\hline \multirow[t]{2}{*}{3-5} \& 4-6 5-7 \& 6-8 \& \& \&

\hline \& 12 \& 7 \& \& Correct response \& Additional guidance

\hline \& \& \& 1 m
1 m

1 m \& \begin{tabular}{l}
Perpendicular bisector between A and C, at least 2 cm in length. Their line, when extended, must all be within the tolerance of the region shown on the overlay.

Arc, of at least the length defined on the overlay, within the tolerance shown.

Complete correct region following through from their attempt at an arc from B with either an attempted perpendicular bisector or an arc from A

 \&

\checkmark For all marks, accept freehand within the tolerance defined

\checkmark Line and/or curve represented, unambiguously, by a series of points

! Arc inaccurate beyond the region defined on the overlay Ignore the arc drawn outside the region on the overlay.

\times Region incomplete

eg

- Not enclosed at one end.

- Point(s) rather than region identified.
\end{tabular}

\hline
\end{tabular}

Tier \& Question						Factorising
3-5	4-6 5-	5-7	6-8			
		13	8		Correct response	Additional guidance
		a	a	1 m	Correct two expressions eg	\checkmark Any indication
		b	b	1 m	Correct expression eg \qquad x	
		c	c	1m	$7(y+2)$	\checkmark y expressed as 1 y
		d	d	$2 \mathrm{~m}$ or $1 \mathrm{~m}$	$2 y^{2}(3 y-1)$ Any of the following partial simplifications - $2\left(3 y^{3}-y^{2}\right)$ - $2 y\left(3 y^{2}-y\right)$ - $y\left(6 y^{2}-2 y\right)$ - $y^{2}(6 y-2)$	\checkmark For $2 m, 6 y^{2}\left(y-\frac{1}{3}\right)$ or $-2 y^{2}(1-3 y)$ \checkmark For $1 m$, the equivalent partial simplification with the term outside the bracket negative \checkmark For $1 m$, the only error is in the sign or in the last bracket omitted eg - $2 y^{2}(3 y+1)$

Tier \& Question					Operations
3-5	4-6 5-7	6-8			
	14	9		Correct response	Additional guidance
	a	a	$\begin{gathered} 2 \mathrm{~m} \\ \\ \text { or } \\ 1 \mathrm{~m} \end{gathered}$	0.05 and 0.1 chosen, and answer 0.005 Both cards correct but answer incorrect or omitted or The correct answer to any two decimal values eg $0.1 \times 0.2=0.02$	\checkmark For $2 m$ or $1 m, 0.05$ chosen twice (answer 0.0025)
	b	b	1 m	$10 \div 0.1$	

Tier \& Question				Expressions		
3-5	4-6 5	5-7 6	6-8			
		15	10		Correct response	Additional guidance
		a	a	1 m	$3 x+10$	
		b	b	1 m	Any three expressions that add to $12 x$ eg - $4 x-5,4 x, 4 x+5$ - $4 x, 4 x, 4 x$ - $2 x+4, x-3,9 x-1$	\checkmark One or two numerical values given eg - $12 x, 7,-7$ \checkmark Expressions that are not simplified eg - $4 \times x, 6 x-2 x, 2 x+2 x$
		c	c	$2 \mathrm{~m}$ or $1 \mathrm{~m}$	$4 x+2 \text { or } 2(2 x+1)$ Correct total of the expressions seen or inferred, even if followed by incorrect working eg - $12 x+6$ - $2 x+5 x+5 x=12 x, 3+-9+12=6$ or Complete correct method with not more than one computational error eg - $2 x+5 x+5 x=12 x, 3-9+12=3$ so mean is $4 x+1$	

Tier \& Question			Powers		
3-5	4-6 5	5-7 $6-8$			
		13		Correct response	Additional guidance
		a	1 m	Correct explanation showing both aspects below: Shows all three component parts as ```7 73}\mathrm{ or }7\times7\times 75}\mathrm{ or }7\times7\times7\times7\times``` and Shows how the component parts are linked, either through multiplication or through addition of the powers (must be stronger than a restatement of the given $49 \times 343=16807$) eg - $49 \times 343=7^{2} \times 7^{3}=7^{5}$ - $7^{2} \times 7^{3}=7^{5}$ - $7^{5}=(7 \times 7) \times(7 \times 7 \times 7)$ - $49=7 \times 7 ; 343=7 \times 7 \times 7$ $(7 \times 7) \times(7 \times 7 \times 7)=16807$ - It's $7^{2} \times 7^{3}$, add the powers you get 7^{5} or Correct explanation showing the powers add to 5 eg - The powers are 2 and 3 , and $2+3=5$ - $7^{2}=49,7^{3}=343,2+3=5$	\times Component parts not all shown eg - $49 \times 343=7^{2} \times 7^{3}$ - $7^{5}=7 \times 7 \times 7 \times 7 \times 7$ ${ }^{\mathbf{x}}$ No indication that the component parts need to be multiplied or the powers need to be added eg - $49=7^{2}, 343=7^{3}, 16807=7^{5}$ - 7^{2} and $7^{3}=7^{5}$ - $49=7 \times 7 ; 343=7 \times 7 \times 7$ $7 \times 7 \times 7 \times 7 \times 7=16807$ \times Shows $7^{2}+7^{3}=7^{5}$ alongside a correct response eg - $49=7^{2}, 343=7^{3}, 7^{2}+7^{3}=7^{5}$, powers add to 5 ! Unconventional notation showing powers are added Accept only if clearly intended to refer to powers eg - $7^{2}+7^{3}=7^{5}$
		b	1 m	7	\times Incomplete processing eg - $7^{8} \div 7^{7}$ (part b) - $7^{6} \div 7^{4}$ (part c)
		c	1m	49 or 7^{2}	\mathbf{x} Incorrect processing eg - $7^{2}=14$ (part c)
		d	1 m	1	! Other digits preceding 1 Ignore.

\|Tier \& Question			Isosceles
15		Correct response	Additional guidance
a	1 m	Correct justification The most common correct justifications are: Working with triangle ACB eg - The other angles in triangle ACB are 16° and 148°, and $180-16-148=16$ or Working with triangles ABD and ACD eg - $\angle \mathrm{BAD}=\frac{180-32}{2}=74$, $\angle \mathrm{CAD}=\frac{180-64}{2}=58 ; 74-58=16$ - $\angle \mathrm{CAD}=58$, if $a=16$ then $58+16+32+16+58=180$, so true. - In triangle ACD there's another 116°, in triangle ABD there's another 148°, $148-116=32$, $32 \div 2=16$ or Working with quadrilateral ACDB eg - $180+116+32+2 a=360$, $2 a=360-328,2 a=32$	\checkmark Calculations shown on the diagram The following may be helpful: \mathbf{x} Subtraction shown in incorrect order eg $\text { - } 64-180=116$ \times Computational error eg - $180-64=68,74-68=16$ \times Incomplete response eg - 74 and 58 calculated, but no indication that $74-58$ is needed. \times Spurious working eg - $32 \div 16$ (unsupported) - Small triangle 64, 58, 58; big triangle $32,74,74$ and $90-74=16$

Tier \& Question					Isosceles (cont)
3-5	4-6 5	5-7 6-8			
		15		Correct response	Additional guidance
		b	2 m	Correct proof The most common correct proofs are: Working with triangle ACB eg - $180-\left(180-x+\frac{1}{2} x\right)=\frac{1}{2} x$ or Working with triangles ABD and ACD eg - $\angle \mathrm{BAD}-\angle \mathrm{CAD}=$ $\begin{aligned} & \frac{1}{2}(180-x)-\frac{1}{2}(180-2 x) \\ & =90-\frac{1}{2} x-90+x \\ & =\frac{1}{2} x \end{aligned}$ or Working with quadrilateral ACDB eg - Other angle at C is $360-2 x$, so $\begin{aligned} & 2 a+x+360-2 x=360 \\ & 2 a-x=0 \\ & 2 a=x \\ & a=x \div 2 \end{aligned}$ $\frac{1}{2}(180-2 x)$ seen or $\frac{1}{2}(180-x)$ seen or Showing reflex angle at C is $360-2 x$	\mathbf{x} Value substituted for x without supporting algebraic proof \times For $2 m$, incomplete working eg - $\frac{1}{2}(180-x)-\frac{1}{2}(180-2 x)=\frac{1}{2} x$

